자료실
번호 : 34 작성일 / 조회 13,068
[철강기초] 강의 성질에 미치는 합금원소

합금원소중에는 강의 성질을 개선시키기 위해 인위적으로 첨가시키는 것도 있지만 미량 잔류량으로도 강의 성질을 해치는 것도 있다. 강에 함유된 여러가지 주요 원소들이 강에 미치는 영향을 살펴보면 다음과 같다.

1 ) 탄 소 (C)

강의 강도를 높이는데 가장 효과적이며 중요한 원소이다. 오스테나이트에 고용되어 담금질시 마르텐사이트조직을 형성시킨다. 탄소량 증가에 따라 담금질 경도를 향상시키지만 담금질시 변형 가능성을 크게 만든다. 철, 코로뮴, 몰리브데넘, 바나듐 등의 원소와 화합하여 탄화물을 형성, 강도와 경도를 향상시킨다.

2 ) 망 가 니 즈 (Mn)

강중에는 보통 0.35~1.0%가 함유되어 있다. 그중 일부는 강속에 고용되며 일부는 강중에 함유된 황과 결합하여 비금속개재물인 MnS를 형성하는데 이 MnS는 연성이 있어서 소성가공시 가공방향으로 길게 연신된다. 그러나 Mns의 형성으로 강속에 있는 황성분이 감소하면서 결정립이 취약해지고 저융점화합물인 FeS의 형성을 억제시킨다.
강의 내산성과 내산화성을 저해하지만 펄라이트가 미세해지고 페라이트를 고용강화 시킴으로써 항복강도를 향상시킨다. 담금질시 경화깊이를 증가시키지만 다량 함유시에는 담금질균열이나 변형을 유발시킨다.
또한 강에 점성을 부여하기 때문에 1.0~1.5%의 망가니즈이 첨가된 강을 강인강(强靭鋼)이라고 부른다. 특히 1.3% 탄소와 13% 망가니즈이 함유된 오스테나이트강을 헤드필드(Headfield)강이라고 부른다.

3 ) 황 (S)

보통 망가니즈, 아연, 타이타늄, 몰디브데넘 등과 결합하여 강의 피삭성을 개선시키며 망가니즈과 결합하여 MnS 개재물을 형성한다. 강중에 망가니즈의 양이 충분하지 못할 경우 철과 결합하여 FeS를 형성한다.
이 FeS는 매우 취약하고 용융점이 낮기 때문에 열간 및 냉간가공시에 균열을 일으킨다. 따라서 이러한 FeS개재물 형성을 피하기 위해 망가니즈과 황의 비는 5대 1로 하고 있다.

4 ) 인 (P)

강중에 균일하게 분포되어 있으면 별 문제가 되지 않지만 보통 Fe3P의 해로운 화합물을 형성한다. 이 Fe3P는 극히 취약하고 편석되어 있어서 풀림처리를 해도 균질화되지 않고 단조, 압연 등 가공시 길게 늘어난다.
충격저항을 저하시키고 뜨임취성을 촉진하며 쾌삭강에서는 피삭성을 개선시키지만 일반적으로 강에 해로운 원소로 취급된다.

5 ) 규 소 (S i)

선철과 탈산제에서 잔류된 것으로 SiO2와 같은 화합물을 형성하지 않는 한 페라이트속에 고용되므로 강의 기계적 성질에 큰 영향을 미치지 않는다.
또한 강력한 탈산제로써 4.5%까지 첨가하면 강도가 향상되지만 2% 이상 첨가시에는 인성이 저하되고 소성가공성을 해치기 때문에 첨가량에 한계가 있다. 뜨임시 연화 저항상을 증대시키는 효과도 있다.

6 ) 질 소 (N)

극히 미량으로도 강의 기계적 성질에 큰 영향을 미치는데 인장강도, 항복강도를 증가시키는 반면 연신율을 저하시킨다. 특히 충격치의 감소 및 천이온도의 상승이 현저하다.
질소는 침입형 원소로써 확산속도가 빠르고 페라이트에 대해 최대 0.1%에서 0,003%까지 연속적으로 용해도 변화를 나타낸다. 이 때문에 강의 각종 취성이나 시효 경화성을 나타낸다. 담금질시효, 냉간가공에 의한 변형시효, 200~300˚C에서의 청열 취성에 의해 인장강도, 항복강도는 증가하고 충격치는 저하하여 강의 취화를 일으킨다.
이를 방지하기 위해 친화력이 큰 알루미늄, 타이타늄, 바나듐, 붕소 등을 첨가하여 취화현상을 방지한다.
다른 원소와 결합하여 질화물을 형성하는데 AIN이 강중에 미세하게 석출되어 있으면 오스테나이트 결정립이 미세하게 되어 세립강 제조가 가능하지만 다향 존재하면 고온인성이 저하되며 특히 단조시 오스테나이트입계에 AIN이 석출되어 입계취성을 일으키고 고온크리프강도를 저하시킨다. 이밖에 타이타늄, 지르코늄, 바나듐, 나이오듐 등과 질화물을 형성하여 결정립을 미세화시킨다.

7 ) 수 소 (H)

원자반경이 매우 작아 강중에 침입형으로 존재하며 다른 원소에 비해 확산속도가 빠르다. 백점(白点), 헤어크랙, 선상조직, 용접시 비드균열 등 여러가지 결함의 원인이 되며 이와 같은 결함을 방지하기 위해 진공용해 또는 진공처리에 의해 탈수소를 행하고 있다.

8 ) 산 소 (O)

철에 거의 고용되지 않기 때문에 강중에 주로 비금속개재물로 존재한다. 이중 SiO2, Al2O3, Cr2O3, TiO2 등은 철에 대해 고용도를 갖지 않지만 FeO, MnO 등은 고온에서 약간 고용되며 이들 비금속개재물은 강의 기계적 성질, 피로특성 등을 저하시킨다.
강중에 산소가 다량 존재하면 침탄시 이상조직의 원인이 되며 경화능을 저하시키고 가열에 의한 오스테나이트 결정립의 성장을 촉진시킨다.


9 ) 동 (Cu)

철광석에서 쉽게 혼입되므로 강에는 보통 0.1~0.3% 정도가 함유되어 있다. 상온에서 페라이트에 0.35%까지 고용되며 고용강화효과를 나타내므로 강도 및 경도는 약간 개선되나 연신율을 저하시킨다.
동을 함유한 강은 열간가공성이 문제가 되며 특히 0.5% 이상 함유되었을 경우 작얄취성의 원인이 된다. 이것은 고온가열시 철보다 동의 산화속도가 작으므로 강표면에 편재하여 열간가공중에 강재내부로 침투하기 때문이며 니켈이나 몰리브데넘을 첨가시켜 이러한 현상을 개선시킬 수 있다. 또 한 동이 소량 함유되어 있어도 대기나 해수중에서 내식성이 현저히 증가하며 인과 공존할 경우 내식성이 더욱 향상된다.
0.4%이상 첨가시에는 동의 미세석출에 의한 석출경화 효과가 나타나므로 실제 스테인리스강에서는 4%정도 첨가석출시켜 강력한 스태인리스강을 만들고 있다.

10 ) 알 루 미 늄 (AI)

강력한 탈산제이지만 너무 많이 첨가되면 강을 취약하게 만든다. 탈질, 탈산용으로는 0.1% 이하로 첨가하는 것이 보통이며 질화물인 AIN은  미세석출하여 강의 결정립 미세화에 효과적이므로 극미세 결정립을 갖는 강인강을 제조할 수 있다. 또한 고온산화방지 및 내황화성에 극히 효과적이다.

11 ) 비 소 (As)

제선제강공정에서 제거하는 것이 거의 불가능하며 강의 재질향상을 위해서 인위적으로 첨가시키는 경우는 거의 없다. 함유량 0.2% 이상에서는 충격치를 저하시키고 충격천이온도를 상승시킬 뿐만 아니라 열간가공성을 해치고 적열취성을 일으킨다.
그러나 이러한 악영향은 보통강이 함유하고 있는 비소의 양만으로는 거의 문제를 일으키지 않는다.

12 ) 붕 소 (B)

0.0005~03.003%의 미량 첨가로도 경화능이 현저히 증가되지만 너무 많이 첨가되면 Fe3B를 형성하여 적열취성을 일으킨다.

13 ) 코 발 트 (Co)

다른 금속원소롸는 달리 소량으로도 강의 경화능을 저하시키며 가격이 비싸기 때문에 인반강에 사용하지 않고 자석, 고급절삭공구, 내열재료 등에 첨가하여 성질을 개선시키는데 사용된다. 특히 고온강도를 개선하는데 효과적이다.

14 ) 코 로 뮴 (Cr)

13%까지 첨가함으로써 오스테나이트 영역을 확장시키고 대량 첨가해도 취화를 일으키지 않는 탄화물을 형성시킨다. 10% 이상 첨가하면 스테인리스강이 되며 내산화성을 향상 시키고 내황화성을 개선하므로 구조용강, 공구강, 스테인리스강, 내열강 등에 거의 모두 함유되어 있는 가장 보편적인 합금원소이다.
그러나 코로뮴 첨가량이 너무 많으며 ¤상이라고 하는 비자성이 취약한 상이 나타난다. 저온취성과 수소취성을 방지하는 효과가 있지만 뜨임취성을 조작하는 역활도 한다.

15 ) 몰 리 브 데 넘 (MO)

0.1~0.3% 첨가로써도 니켈보다 경화능을 10배까지 향상시킬 수 있으며 뜨임취성을 방지하여 뜨임취성 저항성을 부여한다. 탄화물을 형성하므로 고급절삭공구의 합금원소로도 우수한 효과가 있으며 결정립 조대화온도를 상승시킨다.
경화능 향상을 위해 단독으로 사용되기보다는 코로뮴과 같이 사용하면 그 효과가 더욱 좋지만 가격이 고가인 것이 단점이다.

16 ) 니 켈  (Ni)

코르뮴과함께 가장 중요하고 보편적인 합금용 원소이다. 강의 조식을 미세화시키고 오스테나이트와 페러이트에 잘 고용되므로 기지강화에 이용된다. 코로뮴이나 몰리브데넘과 공존하면 우수한 경화능을 나타내며 대형 강재의 열처리를 용이하게 만들며 오스테나이트 안정화 원소이므로 코로뮴과 조합하여 오스테나이특계 스테인리스강, 내열강 등을 형성한다.
강의 저온인성을 강화시키며 용접성, 가단성을 해치지 않는다. 탄소나 질소의 확산을 느리게 만들기 때문에 내열강의 열화(劣化)를 방지하고 팽창률, 강성률, 도자율 등이 향상된다.

17 ) 타 이 타 늄 (Ti)

산소, 질소, 탄소, 황, 수소 등과 친화력이 강하며 탈산, 탈질, 탈황을 위해 사용된다.
탄화물형성능은 코로뮴보다 강하며 결정립을 미세화시키기 때문에 스테인리스강이나 절삭공구강의 개량에도 이용된다. 또한 타금속원소와도 화합물을 형성하여 석출경화 효과가 현저하기 때문에 석출경화형 스테인리스강이나 영구자석 등에 이용된다.

18 ) 주 석 (Sn)

철스크랩로부터 혼힙되어 제강과장에서 거의 제거하지 못하는 원소로써 페라이트에 약 8%까지 고용된다. 강의 인장강도 및 항복강도를 증가시키고 연신율, 충격치를 감소시키는 등 인(P)의 영향과 유사하나 인만큼 현저하지는 못하다. 그러나 열간가공시 적열취성, 뜨임취성, 저온취성 등의 원인이 되고 내식성이 약간 향상되자만 일반적으로 강에는 유해한 원소이다.

19 ) 셀 레 늄 (Se)

유황보다 비싸며 망가니즈과 화합물을 만들어 피삭성을 향상시키고 용강의 유동성을 향상시킨다.

20 ) 칼 슘 (Ca)

강력한 탈산제로써 용강중에서 기화하여 폭발하기 쉽다. 폭발방지를 위해 Ca-Si, Ca-Si-Mn 등의 상태로 첨가하여 비금속개재물의 상태 및 분포를 조정한다.

21 ) 나 이 오 듐 (Nb)

강력한 결정립 미세화원소로 결정립 조대화온도를 상승시키며 경화능을 저하시키고 뜨임취성을 감소시킨다.

22 ) 텔 루 륨 (Te)

강의 피삭성을 증대시키지만 열간가공성을 해친다.

23 ) 연 (Pb)

강의 피삭성을 개선시킨다.

24 ) 바 나 듐 (V)

탄화물 형성능이 커서 미립탄화물을 만들어 강의 조직을 미세화시키며 고장력강에서부터 각종 탄소공구강에 이르기까지 많이 사용되고 있다. 뜨임연화저항성도 몰리브데넘 이상으로 좋으며 고온강도가 개선되지만 산화물인 바나듐옥사이드(V2O5)는 증기압이 높아서 고온증발하므로 첨가량에 제한이 있다.

25 ) 텅 스 텐 (W)

가격이 비싸며 비중이 커서 편재되기 쉬우므로 구조용강에는 거의 첨가시키지 않지만 경화능을 향상시키고 Fe4W2C 또는 Fe3W3C형의 탄화물을 형성하므로 공구강 특히 절삭공구강에 이용된다. 18%W - 4%Cr - 1%V강은 고속도강으로 유명하며 텅스텐이 함유된 자석강도 있다.

26 ) 지 르 코 늄 (Zr)

잘소, 황, 탄소 및 수소와의 친화력이 타이타늄보다 강하기 때문에 이들 원소의 고정역활을 위해 이용된다. 백점의 발생도 0.2~0.3% 첨가로 완전히 방지할 수 있는 것으로 알려져 있다.

                                                                                                           [한국철강신문]

목록

비밀번호를 입력해 주세요 :
비밀번호를 입력해 주세요 :